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Section I

Summary of Program for

Reporting Period

Program Objectives

To develop practical, low cost, real-time methods for

suppressing noise which has been acoustically added to

speech.

To demonstrate that through the incorporation of the

noise suppression methods,speech can be effectively analysed

for narrow band digital transmission in practical operating

environments.

Summary of Tasks and Results

Introduction

This semi-annual technical report desrribes the current

status in the research areas for the period ] April 2979

through 30 September 1979.
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SUPPRESSION OF ACOUSTIC NOISE TN SPEECd

USING TWO MTCROPHONE ADAPTTVE NOISE CANCELLATION

Steven F. Boll

Dennis Pulsipher

ABSTRACT

Acoustic noise with energy greater or equal to the

speech is suppressed by filtering a separately recorded

correlated noise signel and subtracting it from the speech

waveform. This approach was investigated to determine the

degree of noise suppression possible using an external

correlated input. The second reference noise signal is

adaptively filtered using the least mean squares, LMS and

the lattice gradient algorithms. These two approaches are

developed and compared in terms of degree of noise power

reduction, algorithm convergence time, and degree of speech

enhencement. Both methods were shown to reduce ambient

noise power by at least 2PdP with minima' speech distortion

and thus to be potentially powerful Ps noise suppression

preprocessors for voice commruniration in severe noise

e nv i ronment s.
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I INTRODUCTION

It has been shown that there is a significant reduction

in measured speech intelligibility and quality due to the

ambient background noise generated in many operating

environments [Il, [2]. A number of single microphone

approaches for reducing the background noise added to speech

have been developed [3], [4]. These methods become

ineffective when the noise power is equal to or greater than

the signal power or when the noise characteristics, e.g.

mean, variance etc., change rapidly in time. This paper

studies the performance of an approach to noise suppression

in which a second correlated noise source is recorded and

used to reduce the noise added to the speech. This second

noise source is adaptively filtered to minimize the output

power between the two microphone signals. This approach

generates an output which is the least squares estimate of

the speech waveform. Two adaptive algorithms used to filter

the correlated noise are investigated; the LMS approach,

[5], [6] and the lattice gradient approach [71, [8], [9].

Both methods approximate the least squares, Wiener solution.

The LMS algorithm uses the method of steepest descent and

approximates the ensemble gradient with the instantaneous

gradient. The lattice gradient algorithm uses Newton's

-4-



method in an orthogonal basis generated by the lattice

filter.

A severely degraded noisy speech signal was recorded

for testing the performance of each method. The ambient

energy noise was amplified to mask the recorded speech

signal. Both approaches are compared in terms of degree of

noise power reduction, algorithm settling time, degree of

speech enhancement, and computational complexity.

The paper is divided into sections which develop the

two adaptive least squares estimators, describe the

experiments conducted, and demonstrate the algorithm

performance.

II. TWO MICROPHONE SIGNAL GENERATION MODEL

The noise suppression experiments were based on the

model shown in Figure 1. The primary signal x(j) consists

of the common noise signal n(j) filtered through a

transmission channel G, (z) and added to the speech signal

s(j) plus another independent noise signal m1 (j). The

reference signal v(j) consists of the common noise signal

n(j) filtered through a transmission channel G2(z), added to

-5-



a second independent noise signal m (j). The signals s(j),

n(j) , m, (j) and m2 (j) are assumed independent of each other

and G1 (z) and G2 (z) are assumed constant in time,

III. THE WIENER SOLUTION FOR ACOUSTIC NOISE SUPPRESSION

USING TWO INPUTS

A general filtering model used to suppress the noise

component in x(j) which is correlated with v(j) is shown in

Figure 2. As is discussed in [5], minimizing the output

power of e(j), minimizes the output noise power, and results

in e(j) being the minimum mean square estimate of s(j).

The tap weights of the all zero filter W(z) are

computed to minimize the total expected output power. Using

the orthogonal projection theorem [i0], E[e 2 (j)] will be

minimized when

E[e(j+k)v(j)] = 0 for all k.

where

e(j) = x(j) -I w(i)v(j-i)

i=-

6-



This orthoganality relation results in the Wiener-Hopf

equation:

Z_.0 w(i)R vV(k-i) R x (k) for all k

wh er e

R (k) = Etv(j+k)v(j)]

Rv(k) =Efv(j+k)x(j)]

The z transform, W(z) of the Wiener filter is given by:

W(z) = pXV~z

pv(z)

where

pV(z) R (k)zk

P (Z) I=a R (k)z k

vV k--



For the signal model shown in Figure 1, the Wiener

f il ter reduces to

W() P nn(Z)GI(z) G2 (Z)

p MM (Z) + P nn(z)IG2(Z)I12

where P n(z) and P M22(z) are the power spectra of

n(j) and m2 (j) respectively.

The output power spectrum P ee(z) using the Wiener

filter is given by:

2

Pe (Z) =P (Z) + Pm (Z) + Pflf(z)IG(z)L ~ m l- j n()G(~
ee S IM1nnP +1G2 (Z) 12 p (Z)

From the Wiener filter equation, note that if Pm 2 m2 (Z)

is small compared to Pnn (z) 1G 2 (Z) 1 then

W(z) =G (z)G -'(z)
1 2

-8-



This is exactly the linear system required to transform

v(j) into the correlated noise component which was added to

s(j). Also under this condition:

P (z) = P (z) + P (z)ee ss mm 1

Thus if the independent noise sources m (j) and m (j) are1 2

negligible with respect to the signal s(j), and the common

noise signal n(j), the output signal e(j) will match to s(j)

in the mean squared sense.

IV. MATRIX FORUM OF WIENER-HOPF EQUATION AND THE GRADIENT

VECTOR

Define the reference signal vector V(j) as

V(j)= iv(j-l) v(j-2)...v(j-N)]
T

and the filter weight vector as

W = (w w ...w NT
9 2 N

I - 9-



The noise cancelled output e(j) is given in vec-tor form as:

T T
e(j) =x(j-l) - W V(3) = X(j-1)-V (j)W

The mean square error is given by:

=Efe2(j)] = EX2j_]-2PTW + W TRW

where

x(j-1)v(j-1)

x (j-i) v(j-2)

P =E {x(j-1)V(j)) E

x (j-i) v(j-N)

v 2 (j-1) v(j-l)v(j-2) ... v(j-1)v(j-N)
v(j-2)v(j-1) v 2 (j-2) v(j-2)v(j-N)

T.R =E {V(j)V (j)}

v(j-N)v(j-1) v(j-N)v(j-2) ... v2 (j-N)

-10-



The optimal weight vector, W* orthogonalizes the error,

e(j) with respect to the reference signal vector V(j), thus

the optimate estimate of W satisfies:

E[V(j)e(j)] = 0

then

W* E[V(j)VT(j)] = Erx(j-1)V(j)]

or
* -1

W =R P

The optimal weight vector can also be derived by first

calculating the gradient of the mean square error surface

and using the value which forces it to zero. Thus define:

V = -2P + 2RW

then V = 0 when W = R-P

The minimum mean square error is given by:

E[x2 (j-l)] - pTW

min

- 1 -



The mean squared error can also be expressed as:

-min + AWTRAW

Where AW = W-W*

Taking the gradient V of with respect to W gives

an alternative expression for V as

V = 2RAW

V. ITERATIVE METHODS FOR ESTIMATING THE OPTIMAL WEIGHT

VECTOR

A. Method of Steepest Decent [5], [6]

Let W(j) denote an estimate of the optimal weight

vector at time index j. The gradient V (j) evaluated at

W(j) points in the direction of greatest rate of increase in

In the method of steepest descent a new estimate of

W(j) equals the old estimate plus a term proportional to the

negative of the gradient.

Thus

-12-



W(j+I) = W(j) + p (- V (j))

where p is a positive constant called the step size.

Subtracting W* from both sides gives

A W(j+l) = (I-pR)A W(j)

or

AW(j) = (I-pR)j AW(O)

By diagonalizing R using the eigenvector decomposition

[61 it is shown that for convergence it is necessary that:

1 >P>0
max

and that the convergence rate time constant for the pth tap

weight is given by

1
p 2pATpp

where Ap is the pth eigenvalue of R.

13-



B. Newton's Method

In the scalar case the root of a function f(x) is

iteratively estimated according to the rule:

x(j) = x(j-1) - f(x(j-1))
f (x(j-1))

In noise cancellation, the weight vector is updated to

force the gradient to zero. Thus the gradient has the role

of the function f. The derivative of gradient is given by:

a_- 2R

The weight vector is updated as:

- 14 -



r fi

W(j+l) = W(j) - R-'V(j)
2

Substituting for the gradient gives:

W(j+l) = W(j) - R 1 (-2P+2RW(j))

or

W(j+l) R-'P = W

Thus Newton's method converges in one iteration. This

approach is also referred to as the fast start-up equalizer

[8], [11.

VI. ITERATIVE SOLUTIONS BASED ON APPROXIMATIONS TO THE

ENSEMBLE AVERAGES

A. The LMS Algorithm [5], [6]

In the LMS Algorithm the method of steepest descent is

used with the ensemble gradient approximated by the

instantaneous gradient given by:

M )2 (j)V(j) a)W -2e(j)V(j)

15-



The LMS algorithm is given as:

W(j+l) = W(j) + 2p e(j)V(j)

It can shown [5], [61 that the expected value of the

LMS weight vector converges to the Wiener solution. Using

the instantaneous gradient introduces an error called

gradient noise which results in an excess mean squared error

over that obtainable with the Wiener solution. A figure of

merit for the estimation process is defined as

misadjustment. It is equal to the average excess mean

squared error divided by the minimum mean squared error. It

can be shown [6] that misadjustment is equal to:

N
1 1 -= wtrR, tr equals trace
2i=l T

As is discussed in the section of results,

misadjustment is an important design factor in noise

suppression since large misadjustment manifest itself as a

pronounced echo in the speech waveform. The echo is removed

by reducing the step size, and thus the misadjustment. This

reduction of course conflicts with the requirement of quick

16-



settling time for the algorithm which can be shortened by

having a large step size. The trade-off between

misadjustment and settling time are discussed in the results

section.

B. Approximate Newton's Method

Newton's method can be approximated just as the

steepest descent method by replacing the ensemble gradient

with the instantaneous gradient. The Newton's method

approximation would then be:

W(j+l) = W(j) + a R-e(j)V(j)

where a is the normalized step size.

Ignoring for the moment how the autocorrelation matrix,

R would be calculated and inverted, this approach offers

certain advantages over the method of steepest descent.

The convergence properties of this approach can be

estimated using the same approach as with the method of

steepest descent. Specifically replacing the noisy gradient

with the true gradient and subtracting the optimal weight

vector from both sides of the above expression gives:

AW(j+l) = (1-a) AW(j)

- 17-



Thus for convergence it is necessary that:

2 o 0

The adaptation time constant would be the same for each

tap weight and be appropriately equal to:

1

Using a diagonalization analysis similar to that used

for the LMS algorithm, the misadjustment due to gradient

noise can be shown to be approximately equal to:

No
2-a

This approach to tap weight estimation has the

advantage over LMS that all tap weights have essentially the

same adaptation time constant, but the disadvantage that the

gradient estimate must be multiplied by the inverse of R at

- 18 -



each iteration.

The next sections discusses how the tap weights can be

estimated using an orthogonal basis which has an

auto-correlation matrix that is diagonal. With this

diagonalization the number of operations per update is

linear with respect to the number of tap weights.

C. Orthoganalization Using the Lattice Structure

[7], (8], (9]

To generate an orthogonal basis for estimating the tap

weights requires a transformation to map the reference

signal {v(j-m) } into an orthogonal signal {g M(j) ) where:

E {gm (j)gk(j)) = Ok6mk

The lattice structure provides this transformation.

The mathematics describing this orthogonalization for

stationary reference signals is well developed in the theory

of linear prediction of speech [12], [13]. The {gi) I
m

basis called the backward prediction error can be generated

recursively using the lattice filter structure:

g(J+l)= kmfmni(j) + g (j)

fm(j) f f-m1(j) + kmgml (j)

m = 1,2, ... ,N

19-



whe e:

f (j) = v(j)

g (j) v(j-l)

The sequence {f (j)} is called the forward prediction error
m

and the sequence {k I are known as either k-parameters,

reflection coefficients or PARCOR parameters. It can be

shown that if k is estimated to minimize the forward
m

prediction energy a(m) at stage m, where:

then the backward prediction sequence will be orthogonal:

E {g m(j)gk(j)I = mk

where :

am E E

20-



D. Adaptive Lattice Algorithm [7], [8], [9]

To generate the orthogonal basis needed to estimate the

Wiener noise cancelling filter with Newton's Method, the

k-parameters must first be estimated to minimize the forward

prediction error energy. These k-parameters can then be

used to generate the backward prediction sequence using the

lattice structure. Since estimating the k-parameters is

just another least squares problem, Newton's method is used

here too.

The derivative of the forward prediction energy is

given by, (i.e.the instantaneous gradient in orthogonal

basis):

f 2 (j)
k M = 2fm (J) m-i(9)

The adaptive lattice algorithm is then defined as:

Ck fj1 k M 'r (j)g M 1 (j)
m ( m- ( j )

- 21
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where:

.(J+l) = (l-O)$m(j) + og 2 (j)

a is the normalized step size. It is determined by

the degree of relative misadjustment desired. The siqnals

fm (j) and gm (j) are generated from the lattice filter.

The vector 8m (j) represents a single pole filtered estimate

of the average backward prediction error energy:

8m(j) M E{g 2 (j)}m m

Dividing by aM (j) in the orthogonal basis [gm(j) } is
-1

equivalent to multiplying by R in the (v(m-j)) basis. The

vectors {g m(j)) will approach orthogonality only in steady

state.

- 22 -



E. Adaptive Noise Filter in Orthoganal Coordinates

Define H as the N x 1 noise filter vector to be

estimated in the {g m(j) ) basis. The output error at the mth

stage is given by:

s M (j) = sm_ 9)-h m  (j)gm_ (9)

where: sO (j) = x(j-1)

Taking the derivative of the prediction error gives the

expression for the instantaneous gradient at the mth stage:

as2 (j)
h - -2Sm (j)g m- (j)
m

The adaptive algorithm is then defined as:

asm (j)gm-1 (j)
h m(j+1) = hm (j) + am-l(j )  1,2,... N

The adaptive filter estimate of the speech waveform is

equal to sN (j).

- 23 -
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Figure 3 shows the composite adaptive noise cancelling

lattice filter algorithm.

VII. EXPERIMENTS AND RESULTS

A. Introduction

A controlled data base was generated and a series of

experiments were conducted to determine the performance of

the two adaptive estimation methods for removing noise from

speech. A two input signal data base was recorded with a

high degree of control over critical environment factors.

The expected performance of the algorithm was then predicted

using a digital simulation of the acoustic environment. The

performance of the LMS and adaptive lattice methods were

measured in terms of degree of noise power reduction,

algorithm settling time and amount of echo present. These

results are summarized as well as the advantages and

limitations of each approach.

-24-



B. Data Base Generation

When the noise added to the speech at the primary input

differs from the noise at the reference input by a single

linear stationary system, G1 (z) the adaptive filter will

converge to this linear system and complete noise

cancellation results [14]. Referring back to the Wiener

solution development given in Section III, this type of

experiment would correspond to a situation where the added

independent noise sources, ml (j) and m2 (j) are absent, and

G2 (z) = 1. Since the intent of this paper is to investigate

the degree of noise suppression possible using an external

correlated input, it was decided to construct a recording

environment as close as possible to above ideal situation.

An acoustically shielded hard-walled room having an

ambient noise level of approximately 26dB SPL was used for

recording the signals. The room contains audio recording

and playback equipment, a computer terminal, and connections

to the stereo analog to digital and digital to analog

converters. The acoustic shielding prevented independent

noise (modeled as m, (j) and m2 (j)) from interfering in the

estimation process.

- 25-



A stationary white noise source was recorded from an

analog noise generator onto audio tape. The acoustic noise

was generated by playing the audio tape out through a loud

speaker into the room. The reference signal microphone was

placed next to the speaker, while the primary microphone was

placed twelve feet away next to the control terminal. The

speaker spoke into the primary microphone while controlling

the stereo recording program. The noise power was adjusted

to such a level that the recorded speech was completely

masked. The signals were filtered at 3.2kHz, sampled at

6.67kHz, and quantized to fifteen bits. Recordings were

made with and without speech present, each lasting 23.4 sec.

C. Digital Simulation

Before processing the acoustically recorded data

described above, a digital, nonacoustic, simulation was

conducted. Two estimates of the rooms impulse response were

available from a previous experiment [151. In this

experiment each impulse response was estimated empirically

by playing an electrical pulse through the loud speaker.

The acoustic response of this pulse was then recorded by two

microphones placed eight feet from the speaker. The two

- 26 -



microphone signals were digitized and stored on disk. Each

of the measured room impulse responses was digitally

convolved with the digitized white noise source to form the

primary and reference inputs. When these signals were

processed through the LMS algorithm having a step size

corresponding to a misadjustment setting of 1%, using 3000

tap weights, the noise power at the output was reduced by

12dB after 23.4 seconds.

The experiment points out some of the problems to

contend with in using the two microphone approach for noise

suppression. First since G2 (z) is not an identity, the

optimal filter must approximate G, (z)/G 2 (z) . A long

all-zero filter is required to approximate the poles induced

by G- 2 (z). A series of experiments [16] measuring noise

power reduction verses filter length showed that 3000 tap

weights with a 1% misadjustment setting resulted in 12 dB

noise reduction after 23.4 seconds. When only 1000 tap

weights were used the noise power was reduced by 6 dB and

when 500 tap weights were used the noise power was reduced

by only 4 dB. Long filter lengths, in-turn, induce more

excess mean squared error and increase misadjustment. The

increased misadjustment can be minimized by decreasing the

step size, but at the expense of increasing the algorithm's

- 27 -



settling time.

The second problem concerns the non-causality of the

estimated filter. There is no guarantee that G2 (z) will be

minimum phase and thus a stable estimate of G, (z)/G 2 (z)

may be non-causal. Non-causal adaptive filter estimates are

easily generated by placing a delay into the primary channel

[5). However more tap weights are then required with the

accompanying misadjustment problems described above. Also,

the amount of delay depends on the microphone placement with

respect to the noise source. In the digital simulation

experiment both microphones were placed approximately eight

feet from the loudspeaker. The estimated adaptive filter

impulse response then required a delay of 1500 points. To

minimize this non-causal delay requirement for the acoustic

experiment, the reference microphone was moved next to the

loudspeaker. As is seen in the section on results, placing

the reference microphone close to the noise source removed

the non-casual filter effects.

This simulation predicted the potential performance

achievable. In fact considerably better performance was

measured in the actual acoustic experiments described below.
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D. Results Using the LMS Algorithm on the Acoustic Data

The algorithm's performance is measured in terms of the

degree of steady-state noise power reduction during

non-speech activity, the time it takes to reach this steady

state value, (algorithm settling time), and the amount of

echo induced when speech is present. The first two factors

were measured quantitatively while the third factor was

determined from listening tests.

Algorithm settling time can be minimized by choosing a

large step size value. This however will increase the echo

present in the speech output due to the fact that the output

is fed back when estimating the tap weights. A large echo

is unacceptable in the noise suppression algorithm. Three

experiments were conducted to measure algorithm settling

time. The experiments differed by the amount of

misadjustment specified.

Step sizes were used corresponding to misadjustments of

1%, 5%, and 10%. Based on the simulation experiment,

fifteen hundred tap weights were used for estimating the

noise filter. The results of steady-state noise reduction

for the LMS algorithm are shown in Figure 4. The results

show that the algorithm converges to a steady-state noise
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power reduction of -20db in approximately 15 seconds for 10%

misadjustment and 21 seconds for 5% misadjustment. At 1%

misadjustment the step size was so small that the noise

power was reduced by only -10dB before the data ran out.

In listening to the output during speech activity it

was judged that at a 10% misadjustment setting an

unacceptable amount of echo was present and that a 5%

setting the echo was just noticeable. For each

misadjustment setting there was significant noise

suppression and corresponding speech enhancement. At the 1%

misadjustment setting the output had a noise floor which was

10dB higher than the 5% and 10% misadjustment outputs due to

slow settling time. To illustrate this noise suppression

capability, isometric plots of time versus frequency

magnitude spectra of speech with and without noise

suppression are shown in figures 5 and 6. The plots were

constructed by computing magnitude spectra from 64 half

overlapped hanning windowed data sets. Each line represents

a 128-point frequency analysis. Time increases from bottom

to top and frequency from left to right. Figure 5

corresponds to the unprocessed speech signal "The pipe began

to". Figure 6 corresponds to the processed speech signal

using a 5% misadjustment step size. This phrase occurs 17.5
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seconds after startup. Finally Figure 7 shows the noise

shaping filter, W, estimated by the LMS algorithm after

processing 23.4 seconds of noise only signal.

E. Results Using the Adaptive Lattice Algorithm

A similar set of experiments were made to measure

algorithm settling time and amount of echo present for three

representative misadjustment step sizes. In section IV. an

approximate expression for misadjustment was given as:

No
2-0

Step sizes, a , corresponding to misadjustments of 10%, 3.3%

and 1% were used. The convergence characteristics for the

algorithm are shown in figure 8.

In listening to the output during speech activity it

was judged that at the 10% misadjustment setting the amount

of echo present was unacceptable (actually worse than the

10% case for LMS), that at 3.3% the echo was just noticeable

(judged equal to the 5% case for LMS) and that at 1% there

was so little noise reduction that echo present, if any, was
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irrelevant.

For the 10% and 3.3% misadjustment settings there was

significant noise suppression during speech activity.

Figure 9 shows the time verses frequency magnitude spectrum

of the output of adaptive lattice algorithm at the 3.3%

misadjustment settings for the same speech phrase.

There are four sets of filter parameters generated by

the adaptive lattice algorithm. Figure 10 shows the tap

weights H in the orthogonal basis fg (j) ). Figure 11 shows
m

the k-parameters for the lattice filters and figure 12 shows

the average backward prediction energies, {6 m . The S

are not strictly manotonically decreasing due to the

one-pole digital smoothing. The corresponding tap weights

in the reference signal basis can be obtained by multiplying

the H vector by the matrix which transforms k-parameters

into the linear prediction coefficients. This matrix is

defined in [12] and can be generated by the STEPUP procedure

given in (12]. Figure 13 shows the tap weights obtained

from this transformation. Each of these parameter sets were

recorded at the end of the 23.4 second noise only data

segment using the 3.3% misadjustment step size. Note that

the filters shown in Figures 7 and 13 are quite similar
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(differing primarily due to tap weight noise). This is to

be expected since they both represent estimates of the

Wiener filter in the same basis.

VIII. CONCLUSIONS

A. Comparison of Methods

In terms of noise power reduction and amount of echo

present, both approaches can be adjusted to give equivalent

results. Using step sizes corresponding to approximately 5%

and 3.3% misadjustments, each algorithm converges (noise

power down 20dB) after 20 seconds of processing, with a just

noticeable amount of echo. The adaptation rates are not

significantly different. These equivalent results between

the two methods is to be expected since the reference signal

is just white noise, colored by the room's acoustics. The

averaged backward prediction error energies and the

k-parameters are nearly constant after the first one hundred

values. Thus for this environment, the normalization

offered by the gradient lattice offers little advantage over

LMS. For environments with a large ratio between the

smallest to largest eigenvalue, the gradient lattice method

has been shown to converge faster f9].
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The computat ional pr ice payed for the orthoqonal izat ion

and normalization is high compa red to the LMS approach. The

LMS requires 2N multiply-adds per sample while the gradient

lattice requires ION multiplies, 6N adds, and 2N divides per

point. For fifteen hundred tap weights at a sampling rate

of 6.67 kHz, LMS requires 20 million multiply-adds per

second and gradient lattice requires at least 120 million

multiply-adds per second to process this data in real time.

The enormous computation requirement necessitated

implementing both algorithms on an FPS 120-B array

processer. These micro-coded implementations resulted in a

30 to 1 speed-up over that achievable on a conventional

general purpose DEC-10 processor. Both algorithms of course

still did not run in real-time but were processed in a

non-real time disk to disk configuration.

In addition the gradient lattice method has the

disadvantage that it requires an estimate of the average

backward prediction error energy. For this implementation

these estimates were obtained by smoothing the squared

backward prediction values through a single pole filter.

For nonstationary reference siqnals with a large dynamic

range, this smoothing approach may be unable to track the

gain variations thus resulting in an unstable adaptive
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i ter

B. Summary

This paper addressed the problem of reducing the

acoustic noise added to speech by subtracting off an

adaptively filtered second correlated noise source. Two

adaptive algorithms were developed and their performance

characteristics measured using an acoustic signal in which

the noise power was equal or greater than the speech power.

In both approaches it was shown that significant noise

reduction is possible with minimal distortion to the speech

waveform.

In summary, though this two-microphone approach to

noise suppression requires a second signal and considerable

computation, it offers a potentially powerful alternative

approach for speech enhancement in severe noise

environments.
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3. Adaptive Noise Cancelling Lattice Filter Algorithm.
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4. Noise Power Reduction versus Processing Time for the

LMS Algorithm for Misadjustnients of 10%, 5%, and 1%.
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5. Short Time Spectrum of the Unprocessed Speech "The pipe

began to"
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6. Short Time Spectrum of the LMS Algorithm Output.
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9. Short Time Spectrum of the Lattice Gradient Output.
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Lattice algorithm in the Orthoganal Basis.
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APPROACHES TOWARDS A LINEAR NARROW BAND DIGITAL

VOICE ANALYSIS/SYNTHESIS ALGORITHM

H. Ravind ra

Abstract

Certain key ideas towards the development of a linear

narrow band digital voice analysis/synthesis algorithm which

can be used in multiple talker and conferencing

environments, are presented. The use of articulation rate

change, signal extrapolation (analytic continuation) and 2-D

AGC techniques in combination is discussed, problems

highlighted and current results presented in some of the

areas. This approach does not parameterize speech as most

narrow band vocoder algorithms do, but uses data compression

ideas on the speech waveform which lends it the property of

linearity which makes it suitable for use in conferencing

and multiple-talker environments. Also, such a system is

expected to degrade gracefully with noise.
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I. Introduction

Vocoder algorithms which operate at rates of 2.4 to 4.S

kilobits/sec. are considered narrowband. These vocoers

such as LPC vocoder, channel vocoder, etc. parameterize the

speech signal, attempting to extract the parameters in such

a way that a good fit of the output of the model to the

actual signal is obtained. The presence of noise in the

speech signal leads to great difficulty in extracting

exactly the parameters of the model. Thus, these vocoders

degrade drastically with increased noise level. Also, they

are not linear because of the parameterization and hence

cannot be used in conferencing environments.

This note presents several ideas which in combination

point to the possibility of developing of a linear, narrow

band voice analysis/synthesis algorithm which possesses a

graceful degradation characteristic with noise. Because of

linearity, the algorithm satisfies the superposition

principle and hence can be used in conferencing

environments.

The approach considered consists of the following

steps. The speech signal is band limited and transformed

into the short time Fourier domain. Two-dimensional

automatic gain control (2-D AGC) is then applied which

results in a modified speech signal in the time domain. The

number of bits required to quantize each sample of this

- 53 -
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signal has been shown by Mike Callahan (1] to be less than

half of what is required by log PCM techniques, for the same

quantization noise levels. In addition, the instantaneous

phase and center frequency of each channel in the short time

Fourier domain are scaled by a factor leE-. than unity which

leads to a reduction in the bandwidth occupied by the

resulting signal. Hence, this signal requires a lower

sampling rate. The final signal in the time domain is

divided into short segments and only one in every few (2 or

3) segments is transmitted. At the receiver, signal

extrapolation techniques are applied to recover the segments

which were not transmitted, using the segments transmitted.

Then, the first two processes are inverted to realize a

signal which is a close approximation to the original.

Since no parameter extraction is involved and since the

coder is of the waveform type, the algorithm will be linear

and will exhibit graceful degradation with noise.

The technique for articulation rate change and the

problems involved are discussed in Section II. In section

III, signal extrapolation techniques are discussed. Section

IV briefly summarizes the results of Callahan with the 2-D

AGC experiments. Problems which require further research

are highlighted in Section V.
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II. Articulation Rate Change Techniques

Theory:

The speech signal is analysed into several bands in the

frequency domain using a Short-Time Fourier analyzer or a

Constant-Q analyzer. The instantaneous phase and center

frequency of each channel are both scaled by the same factor

and a time domain signal is synthesized from the resulting

channel signals. The process defined by these steps leads

to the scaling of the bandwidth of the synthesized signal by

a factor equal to that used to scale the phase and center

frequencies. To be used as a bandwidth compression

technique, a scale factor less than unity should be used at

the sender and the reciprocal of that factor at the

receiver. Some of the fundamental limitations and other

problems associated with this approach to bandwidth scaling

are discussed below.

The procedure involves dividing a speech signal into

several bandpass signals using any of the analysis

techniques. The signal in the nth band, fn (t) , can be

modeled as a simultaneously amplitude and angle modulated

wave (AAM) as below.

f n(t) qn (t) Cos (Wnt + *n(t))

where :
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q (t) is the magnitude signal in the nth channel.

n (t) is the phase signal in the nth channel and c n

is the center frequency of the nth channel. The complete

signal, f(t) is given by

N-I
f(t) = E f (t) where N is the number of channels.n

n=o

Kahn and Thomas (21 have studied the bandwidth

properties of such signals and they have derived the

following equation for the instantaneous bandwidth of the

AAM wave:

= + + (t $ (t)11
Ofn q n Ij qn(t) 1 12

where Qf is the second moment bandwidth of the signal in
n

the nth channel.

qis the second moment bandwidth of the magnitude

signal in the nth channel.

qn(t) is the magnitude signal in the nth channel.

4n(t) is the derivative of the phase signal in the nth

channel.

(1.11 is the norm of the vector in the function space.

Second moment bandwidth of a signal f(t) is defined as

f 1411 . Ensemble averages are used for

non-deterministic signals. It is clear from the above
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expression that scaling Pn(t)]eads to scaling of the quantity

f n
relative energies in the magnitude and phase signals.

Linearity results only when Q2 = 0, which in general is notqn

true. So, this non-linearity results in incorrect scaling

of the bandwidths of the channel signals which can lead to

frequency aliasing on bandwidth compression and

reverberation on expansion. This we will call the

"Kahn-Thomas effect". Thus, it is not only necessary to

scale the phase signal but also scale the bandwidth of the

magnitude signal in each channel. The approach considered

in this research is to apply the bandwidth compression

process defined above recursively to each channel magnitude

signal. That is, each channel magnitude signal is further

analysed into subchannels, each subchannel consisting of a

magnitude and phase signal. Scaling the phase of the

subchannels leads to the scaling of the magnitude signals at

the next higher level. This idea can be carried further

down by analyzing the subchannel magnitude signals further

into narrower channels and scaling the phase at this level.

Of course, the depth of recursion is limited by the

difficulty in the implementation of the analysis filters.

A fundamental limitation arises when this type of

bandwidth compression is attempted. The technique described

attempts to discard redundant information in speech, like

extra pitch periods. Since speech is only a

quasi-stationary signal, using a large scale factor it
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causes excessive loss of information in each assumed

sLationary section of the signal. On subsequent expansion,

the lost information is not recovered. This type of

distortion is perceived as loss of voicing in voiced

sections of speech.

Implementation and Results:

Three different analysis techniques were used to

implement the rate change. In each case, the bandwidth of a

speech signal was compressed and re-expanded and the

resulting speech compared with the original. The three

schemes are described below.

(a) Using a Constant-Q Analyzer:

A Constant-Q filter bank was used in this scheme. A

Constant-Q analyzer has a frequency resolution which

decreases with increasing frequencies somewhat similar to

the resolution properties of the ear, whereas a short-time

Fourier analyzer has constant frequency resolution. The

distortions were severe for compression factors greater than

2. Also a signal dependent background noise was observed in

the processed signal which can be attributed to the

Kahn-Thomas effect. Using the recursive approach described

on the channel magnitude signals, with a recursion depth of

two, it was found that the signal dependent noise was

reduced but the distortions due to the fundamental

limitation noted above still prevailed.
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(b) Using a Filter Bank Made tip of C'onstani Bandwidth,

Sharp Cutoff Filters.

The overlap between adjacent channels was reduced by

using this type of filter bank. The basic quality of

processed speech remained as in case (a) except for reduced

background noise.

(c) Using a Short Time Fourier Analyzer

In this case a narrow band analysis system was used,

and essentially similar quality results were obtained.

Application of the recursive procedure described earlier to

compensate for the Kahn-Thomas effect is under study.

The experiments suggest that this technique can be

used, without introducing serious degradation of the signal,

with compression factors less than 2.
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III. Analytic Continuation of Band Limited Signals

or Signal Extrapolation

An analytic signal can be recovered completely given

only a section of the signal. This problem can be

characterized as follows. Let P and P be two subspaces
a nd be w usa

of a parent Hilbert Space H. If the projection of a signal

fEPb' on the subspace Pa is given, then under certain

conditions, it is possible to realize an inverse operator by

recursive techniques. With this operator, the signal f can

be recovered from its projection. Papoulis and Gerchberg

[3] have independently proposed similar algorithms based on

the above formulation. They attempt to obtain the signal f

when P is the subspace of all signals band limited to aa

particular frequency and P is the subspace of all signalsa

time limited to a particular time interval. Youla (4] has

shown that these are special cases of a more general problem

of solving operator equations in Hilbert spaces and has

derived certain important conclusions. He shows that the

problems of Papoulis and Gerchberg are not well posed. He

shows and we have found that applying these algorithms to

noisy data leads to serious noise amplification problems.

Richard Frost [51 has modified the above to come up with a

new algorithm which performs the extrapolation by smell

amounts with each iteration and does not add back the

distortion energy at each step (Gerchberg's algorithm does

add back the distortion energy at each step). This makes

the algorithm stable in the presence of noise. He has
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applied it to the restoration of astronomical image data and

proved that it has better convergence properties in the

presence of noise. Signal extrapolation is expected to be

harder in the case of speech signals as no assumptions can

be made about the sign of the signal being extrapolated.

(This is always non-negative in the case of images.)

In speech application, the algorithm is used to recover

the missing signal segment between two successive segments.

So, the problem can be characterized as follows: The signal

f belongs to the subspace of band limited functions. Its

projections onto two mutually orthogonal subspaces are

given. These subspaces consist of functions limited over

two different intervals of time. The problem is then to

find the projection of f onto a third subspace of functions

which is orthogonal to both the given subspaces. The two

key issues to be addressed are the stability of

reconstruction in the presence of noise, and convergence

rate. Preliminary experiments with Gerchberg's algorithm

seem to indicate that the segments of the speech signal must

be very short (much less than a pitch period). Currently,

other algorithms based on Richard Frost's step by step

extrapolation and the three orthogonal subspaces formulation

derived above are under study.
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IV. 2-D AGC Techniques

Mike Callahan (1] has developed a AGC technique to be

applied in the short-time Fourier domain. Essentially, he

models the short-time Fourier Transform F(w,t) of a speech

signal f(t) as the product of an envelope function E(w,t)

and a vibratory function V(w,t) and notes that E is slowly

varying and positive, and V is fast varying and complex.

Then,

log[F(w,t)] P logIE(w,t) I + JogIV(w,t) I + j arg[V(w,t)]

So, passing Ilog F(w,t) I through a high pass filter with a

low pass gain of p<l and then undoing the effect of the

logarithm leads to a Short-time Fourier transform given by

EPV. The time signal synthesized from EPV is the original

signal with its dynamic range compressed. Callahan has

shown that this signal can be quantized with 2 to 3

bits/sample to achieve the same signal/quantization noise

ratio as with ordinary 8-bit PCM techniques.

This technique can be applied to achieve reduced bit

rate requirements per sample of speech signal independent of

the techniques described in the previous sections which

attempt to reduce the effective sampling rate. Hence it may

be possible to use the compression ideas described in tandem

to achieve low bit rates.
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V. Future Work

In the area of articulation rate change, the effect of

recursive correction for the Kahn-Thomas effect, when using

Short-Time Fourier analysis, is to be studied.

Work needs to be dcne in the area of signal

extrapolation to study the performance of various exisLing

algorithms when applied to speech and develop modifications.

More research needs to be done to develop new algorithms to

suit the speech application. The application of existing

one step extrapolation procedures to speech reconstruction

is to be studied.

In all the cases, work is required to better condition

the problem in the presence of noise even at the cost of

imperfect, but acceptable, reconstruction of noise free

signals.
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